
Numerical Analysis of 1-D Parabolic Optimal Transport. This project will be on numerical analysis
of a 1 dimensional, parabolic optimal transport problem. Although the optimal transport problem is a
highly nonlinear and difficult problem in general, this project will deal with the greatly simplified case on
the real line and has a computational component. Even in this simplified case, this direction has not been
explored much, and there are still many interesting open problems.

In the optimal transport problem one has a pile of dirt and a hole of equal size, and wishes to move all
of the dirt over to fill the hole. There is some cost (which might be in terms of money, energy, or some
other quantity) associated to moving one unit of dirt from location x to location y, given by some function
c(x, y). The goal is then to move all of the dirt in a way that the total cost incurred will be minimized
(i.e., an optimal way of transporting).

More rigorously, suppose that there are two domains X and Y ⊂ Rn, and nonnegative Riemann in-
tegrable functions f : X → R, g : Y → R such that

∫
X
fdx =

∫
Y
gdy, and a continuous function

c : X × Y → R. Then for any map T : X → Y for which the function x 7→ c(x, T (x)) is Riemann
integrable, we can define the total cost functional

Cc(T ) :=

∫
X

c(x, T (x))f(x)dx. (OT)

The goal is then to find a mapping T which minimizes Cc, over all maps that satisfy∫
X

h(T (x))f(x)dx =

∫
Y

h(y)g(y)dy

for every continuous, bounded function h : Y → R (this restriction encodes the requirement that all of the
dirt is transported and there entire hole is filled up). A minimizer is called an optimal mapping or Monge
solution, an optimizer will transport a mass distribution µ to ν, while minimizing the total cost measured
by the integral in (OT).

This project will deal with the case when X = [A,B], Y = [C,D] ⊂ R, and c(x, y) = |x− y|2. Then it
is known that the optimal map is the derivative of some function u, where u is a convex function which
satisfies the Monge-Ampère equation

d2u(x)

dx2
=

f(x)

g(du(x)
dx )

, (MA)

du(A)

dx
= C,

du(B)

dx
= D.

It is possible to look at a version of this differential equation which involves time, where one looks for a
function u : [0,∞)×X → R of variables t and x satisfying

log
∂2u(t, x)

∂x2
− ∂u(t, x)

∂t
= log

f(x)

g(∂u(t,x)
∂x )

, (P-MA)

∂u(t, A)

∂x
= C,

∂u(t, B)

∂x
= D for all t ≥ 0,

u(0, x) = u0(x) for some function u0.

It is known that in this case, a solution for this partial differential equation exists for all times t ≥ 0, and
they converge to a solution of (MA) as t→∞.

Students will be tasked with investigating the above evolution equation using various numerical methods
and for different choices of densities f and g. A few possible problems to get started are as follows:

Problem 1: What can be said about the speed of convergence to stationary solutions as t→∞?

Problem 2: Is the convergence better for certain initial conditions u0?

Problem 3: It is possible to frame (P-MA) for more general cost functions. What happens in this case?
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