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Problem Motivation and Suggested Prerequisites: Students who choose this project will be introduced to both
mathematical and computational aspects of the Near-field Ptychography Problem, an imaging problem related to the
design of microscopes and other imaging systems used to “see” extremely small molecules. The mathematics involved
includes, but is not limited to,

• Linear Algebra (Properties of matrices, norms, inner products, eigenvalues & eigenvectors, spectral value
decomposition)

• Spectral Graph Theory (Adjacency matrices, Laplacian matrices)
• Numerical and Fourier Analysis (Angular synchronization, condition number of matrices, Complex vectors,

discrete Fourier transforms, constructing algorithms)
The project is also computational in nature so programming experience will be helpful, but is not strictly necessary.

The Problem Setup: We consider a one dimensional problem for simplicity. Our specimen’s image (e.g., a picture
of a molecule) is represented by a vector of complex numbers x ∈ Cd. Our microscope that images x is described in
terms of its Point Spread Function (PSF) p ∈ Cd which, roughly speaking, describes how its lens focuses light coming
from each area of the sample. Finally, we also allow ourselves the option of masking the sample with a partially
transparent mask m ∈ Cd which the microscope can shift across the specimen. This means that our microscope model
is determined by three different design choices:

(1) Our PSF p ∈ Cd (determining our lens)
(2) Our mask choice m ∈ Cd (setting this to the vector of all ones corresponds to having “no mask”), and
(3) The set of shifts of the mask we choose to use while looking at our sample, for shiftsK ⊆ {0, 1, 2, . . . , d − 1}.

Given these design choices, our microscope will image the sample x by effectively taking a picture of its view of
each shift of the mask against the sample. The picture we see is just a photon count coming from the lens’ view of
x superimposed with a shift of m in reality, so it corresponds to the magnitude of the information the lens (through a
convolution with p) sees from each portion of the elementwise product of a shift of m with x. As a result, our imaging
measurements can be modeled as a function fp,m,K : Cd

→ C|K|×d where the (k, `)th output of fp,m,K is given by(
fp,m,K (x)

)
k,`

:= |(p ∗ (Skm ◦ x))`|2, .

Here, ∗ is the circular convolution of two vectors, ◦ is the Hadamard product of two vectors, and Sk : Cd
→ Cd is a

circular shift operator defined by (Skm) j := m j+k mod d. If you don’t know what some of these things are, don’t worry.
The first days of the project will be devoted to simply understanding the basic definition of the function fp,m,K .

Our Research Questions: Having mastered the definition of fp,m,K , we will then begin to consider several ques-
tions about this type of function. These will include

• To what degree is fp,m,K invertible (i.e., for which choices of p, m, andK )?
• If fp,m,K isn’t invertible enough that we can obtain x (the image we want) exactly from fp,m,K (x) (what we

can actually measure), how much can we actually learn about x from fp,m,K (x) for different choices of p, m,
andK?

• What choices of p, m, and K lead to a better microscope whose measurements fp,m,K allow us to learn as
much about x as we possibly can?

• What can we prove about fp,m,K for specific types of choices of p, m, andK?
• How can we numerically invert fp,m,K to the extent it’s possible to do so?


